
Programmers, Software, Engineers and Designers

Design is a creative activity of making artifacts that are usable for some specific
task. Software design in particular strives for creating products that enrich the interaction
between humans and computer applications. While the software programmer/engineer is
concerned with developing reliable, robust, and maintainable software, the software
designer is concerned with creating products that fits within the user's overall activities,
enhances productivity, and produces a satisfying experience [Winograd, Kapor]. To
accomplish this goal the software designer needs to be able to apply knowledge of human
goals, capabilities, and limitations with knowledge of computer capabilities and
limitations [Preece].

While it is important for a software product to provide the necessary functionality
to perform its intended use, it is also important that it presents its functionality in a
manner that is consistent with the user's understanding. For example, the DOS operating
system provided all the necessary functionality for managing file and folders on a
personal computer from a command line. But the graphical user interfaces and the
desktop metaphor of Apple's Macintosh and Microsoft's Windows have transformed the
personal computer operating system into a product that could be easily used by the most
non-technical users because its presentation fit their conceptual understanding of
managing files and folders.

The study of Human-Computer Interaction (HCI) has collected an array of
anecdotal evidence (e.g., Norman 88, Sachs) and significant empirical evidence (e.g.,
Landauer) that reveals the ability for computer technology to deliver on its promises,
improving our productivity and enhancing our quality of life, rests squarely on how well
the application fits our conceptual understanding of how things work. While computer
processing power and data storage has increased dramatically, we have yet to attain a
proportional increase in the productivity of work and quality life. In part, this is because
we have moved into an era where computers are being used not simply for number
crunching activities, but more to augment a variety of tasks that humans are better suited
for than machines. These are the types of tasks that cannot easily be codified in any kind
of quantitative theory, tasks that include the ability to read, understand, negotiate, and
administer [Landauer].

Left to their own devices, computer programmers take a "systems-centered point
of view", concerned about "how the software works and what parts of it do what"
[Landauer, p. 217-218]. The predominant users of the number crunching era were more
technically literate, willing to put up with a high threshold of indignation (the highest
level of behavioral compromise a user is willing to make to accomplish their goals)
[Saffo]. The users of the new era are less so. They do not want to know how the inner
mechanisms of the machine work; rathethey want to know how the machine will work for
them. This is exactly how we need to design such systems: the application should fit the
users conception of the process, "the user-task model", while the inner mechanisms, "the
engineer model", should be as transparent as possible [Gentner and Grudin]. Just as most
automobile drivers (myself included) know very little of how a car actually works, and

yet find the task of driving natural, similarly we want to design computer applications
that are natural to use with little worry or concern about how they are being
accomplished.

In the area of HCI research, a number of approaches have evolved to meet this
challenge. These include User-Centered Design [Landauer], Human-Centered Systems
[Flanagan, Huang, Jones, and Kasif], Participatory Design [Muller and Kuhn], and
Contextual Design [Beyer and Holtzblatt]. Though they differ in their techniques, these
approaches have a general common vision of seeing "the interplay between human
activity and technological systems as inextricably linked and equally important aspects of
analysis, design, and evaluation" [Flanangan, Huang, Jones, and Kasif, p. 3]. The
different techniques find ways to interject the designer in the user's world and the user in
the designer's world in order to develop a shared conceptual model of the task and the
context in which they are being done [Muller and Kuhn].

The difference between a software designer and software engineer has been
compared analogously to the difference between a building architect who designs a
structure and a contractor that builds it [Winograd]. While there are HCI degree-granting
programs such as Stanford's Center for HCI study, and larger companies such as IBM
which have design and usability labs, it is still currently the computer science
programmer doing both design and development, like an architect that both designs and
constructs the building. So it is very important that we educate computer science students
in the techniques of software design that embrace the human activity as an integral
component of the analysis, design, and evaluation.

References Cited

Beyer, H., and Holztblatt, K. (1997) Contextual Design: A customer-centered approach to
systems designs, Morgan Kaufman Publishers, San Francisco, CA.

Flanagan, J., Huang, T., Jones, P., and Kasif, S., eds. (1997) NSF Workshop on Human-
Centered Systesm: Information, Interactivity, and Intelligence, Final Report.
(http://www.ifp.uiuc.edu/nsfhcs).

Gentner, D. and Grudin, J. (1996) "Design Models for Computer-Human Interfaces",
IEEE Computer, Vol. 29, No. 6, pp. 28-35.

Landauer, T. K. (1995) The Trouble with Computers: Usefulness, Usability, and
Productivity, The MIT Press, Cambridge, Mass.

Muller, J., and Kuhn, S. (1993) "Participatory Design", Communications of the ACM,
Vol. 36, No. 6, pp. 24-28.

Norman, D. (1988) "The Psychopathology of Everyday Things", Chapter 1 in The
Psychology of Everyday Things, Basic Books.

Preece, J. (1996) Human-Computer Interaction, Addison-Wesley, Menlo Park, CA.

Sachs, P. (1995) "Transforming Work: Collaboration, Learning, and Design",
Communications of the ACM, Vol. 38, No. 9, pp. 36-44.

Saffo, P. (1996) "The Consumer Spectrum" Chapter 5 in Bringing Design to Software, T.
Winograd ed., Addison-Wesley, Menlo Park, CA.

Winograd, T. (1996) "Introduction" in Bringing Design to Software, ACM Press, New
York, NY, pp. xiii-xxxv.

	Programmers, Software, Engineers and Designers
	References Cited

